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The interior of an insulating cylindrical container is supposed filled with an 
incompressible, electrically conducting, viscous fluid. An externally applied 
magnetic field is caused to rotate uniformly about an axis parallel to the cylinder 
generators (by applying two alternating components out of phase at right angles). 
Induced currents in the fluid give rise to a Lorentz force which drives a velocity 
field, which in general may have a steady and a fluctuating component. The 
particular case of a circular cylindrical container in a transverse magnetic field 
is studied in detail. Under certain reasonable assumptions, the resulting flow is 
shown to have only the steady component, and the distribution of this component 
is determined. Some conjectures are offered about the stability of this flow 
and about the corresponding flows in cavities of general shape. 

1. Introduction 
Progress in magnetohydrodynamics has been greatly hindered by the diffi- 

culties of achieving high magnetic Reynolds numbers in the laboratory. This 
number R, is a dimensionless measure of the conductivity of the fluid and is 
defined by 

where L and V are typical length and velocity scales of the moving fluid, and ,U 

and u its permeability and conductivity, respectively. The condition R, 9 1 
is usually satisfied in astrophysical or geophysical problems on account of the 
large length scale involved, and many problems have been intensively studied 
by theoreticians for the limiting situation of infinite conductivity (or R, = a). 
Laboratory experiments with mercury or liquid sodium are usually performed 
at R, < 1, or at the highest speeds and largest length scales practicable, at 
R, z 1. Consequently, it  has not yet been possible to observe in the laboratory 
many of the effects predicted by theoreticians for the case R, B 1, in particular 
those effects associated with the ‘freezing’ of the magnetic lines of force in the 
fluid. 

The velocity V appearing in (1.1) must be interpreted as the relative velocity 
between the fluid and the magnetic field. It is difficult to obtain a high value of 
in the laboratory simply by moving fluid relative to a stationmy magnetic field. 
On the other hand, it should not be too difficult to obtain a large V by moving the 
field (by using suitable electrical windings outside the fluid) relative to the station- 
ary fluid container. In particular a magnetic field B, may be rotated relative to 
the fluid by applying two alternating components out of phase and a t  right angles. 

R, = ~~T ,uuLV,  (1.1) 
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A field of high frequency w gives rise to a high relative velocity, V = w L ,  and this 
suggests that high effective values of R,,( = 47rpgL2w) may in fact be accessible 
by quite easy means. This is no more than a restatement of the well-known fact 
that a conductor behaves almost like a perfect conductor when immersed in a 
high frequency magnetic field. Henceforth we shall assume 

R, = 4 7 r p ~ L ~ 0  % 1. (1.2) 

If the fluid is contained inside an insulating container immersed in such a high 
frequency rotating field, then skin current flow, effectively excluding the field 
from the interior of the fluid. In  the language of fluids, this skin is a magnetic 
boundary layer. Within this layer the curl of the Lorentz force generates vor- 
ticity, and a motion is transmitted to the core of fluid. The characteristic velocity 
of this fluid motion, U say, may be several orders of magnitude smaller than 
wL. Indeed U will decrease as B, decreases so that circumstances certainly exist 
for which the magnetic Reynolds number defined in terms of U ,  

8, = 47rpaLU, (1.3) 

R, % 1, 8, <i 1, (1.4) 

is small compared with unity. This combination of conditions, 

is the basis of the work described here; the latter condition may be expressed 
in terms of the amplitude of the applied magnetic field, when the resulting fluid 
motion is determined (see (2.21) and (2.28) below). 

The significance of the condition 8, <i 1 (which would in fact be hard to violate 
in the laboratory) is that the magnetic field distribution is unaffected by the 
motion of the fluid, and may be calculated as though theJluid were u solid conductor 
(It is of course far from uniform being zero in the core of the conductor; the dis- 
tortion of the field is associated with the condition R, > 1.) This is a striking 
simplification since the determination of the magnetic field everywhere is now a 
linear problem of well-known type (Landau & Lifshitz 1960). There remains, 
however, the formidable problem of solving the Navier-Stokes equations for the 
fluid motion, under a known distribution of Lorentz forces in the magnetic 
boundary layer. The type of motion that is produced will be largely governed in 
general by the magnitude of the Reynolds number R = U L / v ,  where v is the 
kinematic viscosity of the fluid. The particular case of a circular cylinder in a 
rotating transverse field is greatly simplified by the fact that the streamlines 
turn out to be purely circular, and the inertia forces can be balanced by a radial 
pressure gradient; only in this case is the Reynolds number irrelevant. 

2. Circular cylinder in a rotating transverse field 
The magnetic Jield distribution 

Suppose that the conducting fluid is contained inside the insulating boundary 
T = u in cylindrical polars (r ,  8,~); the region r > u is supposed insulating. The 
magnetic field B, is applied perpendicular to the cylinder axis, and is caused to 
rotate with uniform angular velocity w ,  so that 

B, - B,cos(B-wt), BOB - -B,sin(B-wt) as r -+a. (2.1) 
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The field and resulting flow are independent of z and are confined to the ( r ,8 )  
plane. 

It is convenient to introduce the 'magnetic stream function' +B, defined by 

where from ( 2 .  1), $, N BorImei(e-ut) as r -+ CQ. (2 .3)  

the imaginary part being understood. For r > a, V A B = 0 so that V2$ = 0, i.e. 

(V2- l / r2)g(r )  = 0, 

i.e. g(r)  = C/r  (C = const.), (2 .5 )  

(the solution linear in r being rejected by virtue of (2.3)). 

asjat = AVB, For r < a, 

(neglecting the effect of the motion of the fluid by virtue of 8, < l ) ,  where 
h = (4npa)-l is the magnetic diffusivity of the fluid, i.e. 

or, using 

(2.7) 

with general solution 

where Ic = (w/2A)4. The part involving Ydz gives an infinite magnetic field at 
r = 0 and must be rejected, i.e. B = 0. 

The constants A and C are determined by the conditions that both B, and 
Bo are continuous across r = a (the possibility of surface currents being dis- 
missed since c~ is finite). These conditions give 

f = ArJ,,[lc( 1 + i) r]  + BrY,,[k( 1 + i) r ] ,  (2.8) 

(2.9) 

where p = k( 1 + i) a. This completes the determination of the magnetic field 
distribution. 

Now R, = 2 ( k ~ ) ~ ,  so that for R,, 9 1 the asymptotic formulae for the Bessel 
functions for large Icr and p may be employed, e.g. 

J d 2 ( p )  (2/np)t cos [ p  - a-tn - $771, J:,2 N - (2/np)t sin [ p  - 2-9, - in]. 

After some reduction, the solution simplifies to the form 

(2.10) 
+., = B,(r - (aZ/r)} sin (6' - wt)  + (2tB0a/kr)  sin (6 - wt + 2.) ( r  > a) ,  

(r > a) .  = (24B0/k) e-k(a-")sin I(6 - w t )  + k(a - r )  + in1 
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This form of the solution may alternatively be determined by first anticipating 
that for Rm 9 1 the solution will have a boundary layer character, and that the 
terms r- 'a/ar(f/r) and f / r3  in (2.7) will be negligible compared with a2/ar2((f/r) 
within the layer, but there is then a slight difficulty in eliminating the term 
corresponding to the Yd,-term that appears in the full general solution. 

t t 
FIGURE 1. Lines of force +B = const., when a magnetic field rotates about 

a conducting cylinder. 

The lines of force, @B = const., are sketched in figure 1. The first part of the 
solution (2.10), B,(r - a2/r) sin (8 - ot), is the same as the stream function for 
potential flow past a cylinder; the remaining part of the solution (for ka 9 1) 
is a small perturbation of this representing the penetration of the lines of force 
into the cylinder. The lines of force which start within a distance O(k-l)  of the 
axis 0' = 8-wt  = 0 intersect the cylinder, intersecting first at 8' = in and 
13' = Qn. Those lines of force that intersect the cylinder surface within a distance 
O(k-1) of the points 8' = &, sn penetrate to near the centre of the cylinder, but 
the magnetic field is exponentially small inside the 'skin'. The tendency for 
the conductor to impede the motion of the lines of force across it is clearly marked. 
The skin thickness is 

The whole pattern of course rotates with angular velocity w. The lines of force in 
figure 1 have been sketched for a moderate value of R, in order to indicate the 
pattern. As R, -+ co, the pattern inside the cylinder shrinks into the skin, the 
dotted line of force being singular in the sense that it is the only line of force 
which penetrates to the centre in this limit. 

S = O ( P )  = O(aRZ4). (2.11) 

The velocity distribution 

The electric current in the fluid j is purely in the axial direction, and from 
4npj = VAB, is given by 

(2.12) 

making the thin layer approximation already employed above. Hence from 

(2.1 O), 4npj = 2#B, ke-k(a+)cos 6, (2.13) 

where 6 = (0 - wt)  + k(a  - r )  + in. The rate of production of vorticity in the mag- 
netic boundary layer by the Lorentz force j A B is 

4 ~ p j  = - 0 2 1 ~ ~ ~  s (a2/ar2) @B, 

(2.14) 
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where k is a unit vector in the x-direction. Using (2 .10)  and (2 .12) ,  this gives 

V A (j A B) = + Bi k/n,ur [ - sin <(sin < - cos <) - cos <(cos < + sin <)I e-2k(a-r) 

= - (Bi k /npr )  e-2k(a-r). (2 .15)  

The rather surprising disappearance of the dependence on (8 - wt) is due to the 
fact that j and $B are exactly out of phase at every point. (This is certainly 
untrue if R, is not large, in which case the flow would have a steady and a 
fluctuating component.) 

Since the rate of production of vorticity in the skin depends only on r ,  the 
stream function $ of the resulting velocity field likewise depends only on r,  
and the equation determining $ (again using the thin layer approximation to 
replace r by a in the denominator of (2 .15 ) )  is 

vV4 $ = (B ik /qupa)  e-2k(a-r), 

where p is the fluid density. The particular integral is 

= (B; / l6nppvak3)  e-2k(a-r), 

(2 .16)  

and the complementary function is 

$2 = A'r2 + B' log r. 

The combination satisfying a$/ar = 0 on r = a and a$/ar finite at r = 0 is 

The velocity distribution is purely in the $-direction and is 

(2.17) 

(2.18) 

In  the core region, defined by k ( a  - r )  > 1, the velocity is the rigid body rotation 

ug N Qr (2.19) 

M2 B: - _  
8nppva2k2 - RL w' 

with angular velocity Q =  (2 .20)  

where M = ( ~ / p ~ ) t B , a  (2.21) 

is the Hartmann number as usually defined. 
The relation between f i m  defined in (1 .3)  and R, is 

(2.22) 

and the conditions (1 .4)  are therefore compatible as Rm -+ 00 keeping M constant. 
Possible orders of magnitude for mercury are indicated in table 1. Note that 

decreases as w increases (other things being constant) simply because the layer 
within which the driving Lorentz force is effective decreases in thickness, and the 
viscous reluctance of the fluid to respond becomes large. The smaller radius 
tends to favour a large angular velocity Q in the fluid, which should be easily 
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observable in an experiment. The Reynolds number of the flow, though not 
relevant for this case of circular cross-section, is given as an indication of the 
importance of inertia forces for the flow inside other cross-sections. 

3. The stability of the flow inside a circular cylinder 
The flow described above has the property that the circulation decreases out- 

wards within the layer between the rotating core and the cylinder which is at 
rest. Such a flow is prone to instabilities (Rayleigh 1916), and one might expect 
instabilities of the Taylor vortex type (Taylor 1923) when the rotation in the 
core exceeds some critical value. At high rotation rates, there would seem to be 
the possibility of a steadily rotating stable core bounded by a turbulent magnetic 
boundary layer. 

a. w Rrn M sz 2, R 

10 1 0 5  103 1 10-1 10-3 103 

1 106 1 0 2  1 lo+% 10-2 104 

cm see-l sec-' 

10 1 0 6  1 0 4  1 10-2 10-4 1 O Z  

TABLE 1. Possible orders of magnitude in mercury 

If a small perturbation is superposed on the steady flow determined above, 
the linearized equations describing the evolution of the perturbation are not 
influenced at all by the Lorentz force, whose only role is to determine the un- 
perturbed state. The dimensionless number which appears in these equations, 
and which determines the onset of instability is the Taylor number, 

T = (UQ'&~/U') = (u/u') ( M ' O / R L ) ~  ( u / R ~ ) ~ ,  

i.e. T = ( A / u ) ~  M4R;g. (3.1) 

Taylor (1933) found that the circulating flow between cylinders of nearly equal 
radii when the inner one rotates with angular velocity i2 is stable or unstable 
according as T 2 1709. The situation studied here is different only in that the 
velocity profile in the layer (2.18) and the inner boundary condition on the 
velocity perturbations are different; one might expect these differences to change 
the critical Taylor number by a t  most a factor of order unity. Hence it is probably 
safe to say that the criterion for stability of the flow studied here is 

(A/U)~M~R;% < 103a, (3.2) 

where a is some number of order unity. For mercury, h / v  z lo6, and the values 
in table 1 indicate that the first two situations are probably stable, while the 
thirdsituationisprobably unstable. It seemssuperfluous to attempt to make more 
precise stability calculations (by solving the stability eigenvalue problem) 
until there is some prospect of carrying out the experiment. 
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4. The flow inside non-circular containers 
Consider now the case of a cavity which is cylindrical but not circular. This 

is equivalent to allowing a variation in the curvature K($)  of the cylinder surface, 
where $ is the distance along the arc of the surface. It seems likely that the 
flow will be described by an equation like (2.16), allowing for inertia forces, 
and for the variation of curvature of the surface, viz. 

where 7 is measured normally in from the surface. Built into this equation is the 
assumption, certainly valid for the circular case, that the only effect of the rotating 
magnetic field is to generate vorticity in the magnetic boundary layer at a rate 
constant in time, but proportional to the local curvature of the surface. There 
may in addition be a time dependent component of the flow of frequency 2w, 
but for large w one would expect this component to be of small amplitude (due 
to large viscous damping) and irrelevant to the determination of the mean flow. 

If the Reynolds number R, based on the skin thickness k-l is small, the velocity 
component v in the 5 direction a t  the inner edge of the skin may be determined 
approximately from (4.1) in the form 

43 = ( B i k / n w v )  K(5) / (2k)3;  (4.2) 

the condition for the consistency of this derivation is 

R, = (v/kv) = (M2/Rk)  ( A / v )  < 1, (4.3) 

and if this is satisfied, the problem reduces to that of determining the flow when 
the tangential velocity at the inner edge of the skin is prescribed by (4.2). This 
problem further subdivides according as the Reynolds number based on the over- 
all dimension a = K - ~ ,  

R = valv z R, ~i, (4.4) 

is large or small. If large, then there is a further boundary layer with closed 
streamlines of thickness aR-4, and inside this a steady flow of uniform vorticity 
(Batchelor 1956). If small, then the non-linear terms in (4.1) are negligible 
everywhere, and the stream-function satisfies the biharmonic equation in the 
core. 

If, on the other hand, R, is large, but small compared with R,, then a conven- 
tional boundary layer analysis would be needed to determine the solution of (4.1) 
through the skin. In  this case R is necessarily large, and the flow in the core is 
of the uniform vorticity type. 

The rate of production of vorticity in the skin is greatest where the curvature 
is greatest. An interesting extreme case is that in which the cross-section is a 
polygon, for example an equilateral triangle. The flow inside the triangle is that 
due to equal steady concentrations of vorticity production at the three corners. 
The rate of vorticity production along the straight edges where K ( $ )  = 0 is zero. 
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